412 research outputs found

    Lepton distribution as a probe of new physics in production and decay of the t quark and its polarization

    Get PDF
    We investigate the possibilities of studying new physics in various processes of t-quark production using kinematical distributions of the secondary lepton coming from decay of t quarks. We show that the angular distributions of the secondary lepton are insensitive to the anomalous tbW vertex and hence are pure probes of new physics in a generic process of t-quark production. The energy distribution of the lepton is distinctly affected by anomalous tbW couplings and can be used to analyze them independent of the production process of t quarks. The effects of t polarization on the distributions of the decay lepton are demonstrated for top-pair production process at a gamma-gamma collider mediated by a heavy Higgs boson.Comment: 15 pages, 7 figures, uses axodraw.sty (included), references added. v3 to appear in Journal of High Energy Physics. Incorporates minor changes in the discussion on radiative corrections which do not affect the results. Typo in reference correcte

    Systematic study of autocorrelation time in pure SU(3) lattice gauge theory

    Full text link
    Results of our autocorrelation measurement performed on Fujitsu AP1000 are reported. We analyze (i) typical autocorrelation time, (ii) optimal mixing ratio between overrelaxation and pseudo-heatbath and (iii) critical behavior of autocorrelation time around cross-over region with high statistic in wide range of β\beta for pure SU(3) lattice gauge theory on 848^4, 16416^4 and 32432^4 lattices. For the mixing ratio K, small value (3-7) looks optimal in the confined region, and reduces the integrated autocorrelation time by a factor 2-4 compared to the pseudo-heatbath. On the other hand in the deconfined phase, correlation times are short, and overrelaxation does not seem to matter For a fixed value of K(=9 in this paper), the dynamical exponent of overrelaxation is consistent with 2 Autocorrelation measurement of the topological charge on 323×6432^3 \times 64 lattice at β\beta = 6.0 is also briefly mentioned.Comment: 3 pages of A4 format including 7-figure

    Electroweak corrections to Higgs production through ZZ fusion at the linear collider

    Get PDF
    We present the full order alpha electroweak radiative corrections to e+e- -> e+e-H. The computation is performed with the help of GRACE-loop. The extraction of the full QED corrections is performed, these are quite large at threshold. The genuine weak corrections, for the linear collider energies, when expressed in the G_mu scheme are of order -2 to -4 for Higgs masses preferred by the latest precision data. We also extract the m_t^2 type corrections and make a comparison with the weak corrections for the process e+e- ->nu nu H.Comment: 16 pages and 6 figure

    Full one-loop electroweak radiative corrections to single Higgs production in e+ e-

    Get PDF
    We present the full O(α){{\cal O}}(\alpha) electroweak radiative corrections to single Higgs production in \epemt. This takes into account the full one-loop corrections as well as the effects of hard photon radiation. We include both the fusion and Higgs-strahlung processes. The computation is performed with the help of {\tt GRACE-loop} where we have implemented a generalised non-linear gauge fixing condition. The latter includes 5 gauge parameters that can be used for checks on our results. Besides the UV, IR finiteness and gauge parameter independence checks it proves also powerful to test our implementation of the 5-point function. We find that for a 500GeV machine and a light Higgs of mass 150GeV, the total O(α){{\cal O}}(\alpha) correction is small when the results are expressed in terms of αQED\alpha_{{\rm QED}}. The total correction decreases slightly for higher energies. For moderate centre of mass energies the total O(α){{\cal O}}(\alpha) decreases as the Higgs mass increases, reaching -10% for MH=350M_H=350GeV and s=500\sqrt{s}=500GeV. In order to quantify the genuine weak corrections we have subtracted the universal virtual and bremsstrahlung correction from the full O(α){{\cal O}}(\alpha). We find, for MH=150M_H=150GeV, a weak correction slowly decreasing from -2% to -4% as the energy increases from s=300\sqrt{s}=300GeV to s=1\sqrt{s}=1TeV after expressing the tree-level results in terms of GμG_\muComment: 16 pages, 3 figures. Only correction is a reference to a web-pag

    Autocorrelation in Updating Pure SU(3) Lattice Gauge Theory by the use of Overrelaxed Algorithms

    Full text link
    We measure the sweep-to-sweep autocorrelations of blocked loops below and above the deconfinement transition for SU(3) on a 16416^4 lattice using 20000-140000 Monte-Carlo updating sweeps. A divergence of the autocorrelation time toward the critical β\beta is seen at high blocking levels. The peak is near β\beta = 6.33 where we observe 440 ±\pm 210 for the autocorrelation time of 1×11\times 1 Wilson loop on 242^4 blocked lattice. The mixing of 7 Brown-Woch overrelaxation steps followed by one pseudo-heat-bath step appears optimal to reduce the autocorrelation time below the critical β\beta. Above the critical β\beta, however, no clear difference between these two algorithms can be seen and the system decorrelates rather fast.Comment: 4 pages of A4 format including 6-figure

    Particle Collisions on Stringy Black Hole Background

    Full text link
    The collision of two particles in the background of a Sen black hole is studied. With the equations of motion of the particles, the center-of-mass energy is investigated when the collision takes place at the horizon of a Sen black hole. For an extremal Sen black hole, we find that the center-of-mass energy will be arbitrarily high with two conditions: (1) spin a0a\neq 0 and (2) one of the colliding particles has the critical angular momentum lc=2l_{\text{c}}=2. For a nonextremal Sen black hole, we show that, in order to obtain an unlimited center-of-mass energy, one of the colliding particles should have the critical angular momentum lc=2r+/al'_{\text{c}}=2 r_{+}/a (r+r_{+} is the radius of the outer horizon for a nonextremal black hole). However, a particle with the angular momentum l=lcl=l'_{\text{c}} could not approach the black hole from outside of the horizon through free fall, which implies that the collision with arbitrarily high center-of-mass energy could not take place. Thus, there is an upper bound of the center-of-mass energy for the nonextremal black hole. We also obtain the maximal center-of-mass energy for a near-extremal black hole and the result implies that the Planck-scale energy is hard to be approached. Furthermore, we also consider the back-reaction effects. The result shows that, neglecting the gravitational radiation, it has a weak effect on the center-of-mass energy. However, we argue that the maximum allowed center-of-mass energy will be greatly reduced to below the Planck-scale when the gravitational radiation is included.Comment: 17 pages, 4 figures, published versio
    corecore